Nuclear Energy

NUCLEAR ENERGY ADVANCED MODELING & SIMULATION

The FUELS Integrated Performance & Safety Code

Steven L. Hayes

Technical Lead for Fuels IPSC Idaho National Laboratory

Outline of Presentation

Nuclear Energy

- **The Fuels IPSC**
 - Objectives for the Product
 - Multiscale, Multiphysics Approach
 - Synergy with the FCRD Advanced Fuels Campaign
- Two Codes: AMP and MBM
- An Illustration: Challenge Problem(s)

Objectives of the Fuels IPSC

Nuclear Energy

- The Fuels IPSC objective is to deliver a science-based (truly predictive) computational tool for nuclear fuel pin/assembly analysis and design
 - Near term: oxide & metallic fuels, thermal & fast spectra (water & sodium coolants), irradiation performance of fuel pins in the quasi-steady state and operational transients
 - Longer term: additional fuel forms, irradiation performance of fuel pins/ assemblies during transients/accidents

■ Potential Applications

- <u>LWRs</u>: better informed safety margins, better informed operational constraints, power uprates, burnup extension
- Advanced Reactors: (accelerated) design and qualification of new fuels

Customers/stakeholders

- CASL (LWRs)
- FCRD (advanced reactors)

Multiscale, Multiphysics Approach

Nuclear Energy

Approach: Multi-scale, multi-physics based fuel performance simulations in 3D

- Make use of theory/first principles, reduce reliance on empirical models
- Develop atomistically-informed meso-scale models to simulate evolution of microstructure under irradiation
- (Validate physics models vs. separate effects and integral experiments)
- Predict fuel properties and performance at engineering scale

Lower Length Scale Physics

- Understand the thermodynamic and kinetic relationships between multi-dimensional materials/defect structures and predict their evolution under irradiation
- Up-scale results to inform engineering scale simulation

Irradiation Performance at Engineering Scale

- Simulate integral performance of fuels under irradiation
- Assess safety margins (including failure probabilities) with quantified uncertainties for normal operating conditions and transients
- Develop methodologies to optimize fuel designs/constrain reactor operations in order to minimize fuel degradation and avoid fuel failure

Nuclear Energy

Evolving Microstructure used to Degrade Thermal Conductivity

Synergy with the FCRD Advanced Fuels Campaign

Advanced Fuels Campaign Execution Plan (FY10)

- <u>3</u> Areas of Emphasis in Irradiation Testing (FY11 FY15)
- 1. Feasibility testing of emergent, innovative fuel concepts that address the "Grand Challenges".
- 2. Separate effects testing to broadly advance the theoretical understanding of nuclear fuel behavior and inform/validate the advanced modeling and simulation effort.
- 3. Assessments to gain an understanding of the differences and/or limitations between testing in neutron-shrouded positions in thermal test reactors vs. prototypic fast-spectrum environments.

Two Codes: AMP & MBM

Nuclear Energy

- Focused on engineering scale simulations
- Informed and validated by integral experiments

Target length scales for AMP vs. MBM applications; some overlap necessary.

■ MBM (MOOSE-Bison-Marmot)

- Focused on meso-scale scale simulations and upscaling to pellet/pin
- Informed and validated by separate effects experiments

■ Engineering & Meso-scale Coupled Simulations

Potential for a truly predictive computational tool!!!

Fuels IPSC Challenge Problem(s)

Nuclear Energy

- For a full-size fuel pin, predict cladding integrity during steadystate reactor operation and anticipated, operational transients
- ① Oxide fuel in LWR (UO₂ in Zircaloy cladding)

 - ☑ Cladding creep
 - ✓ Pellet-cladding mechanical interaction
 - Cladding corrosion/hydriding
 - → Failure prediction (with uncertainty estimate)

- ✓ Restructuring, constituent redistribution, solid fission product transport
- Cladding creep
- ☑ Fuel-cladding mechanical interaction
- ☑ Fuel-cladding chemical interaction
- → Failure prediction (with uncertainty estimate)

Challenge Problem(s) Context

Nuclear Energy

■ What's <u>not</u> new, different?

- Fuel systems (UO₂, MOX, U-Pu-Zr fuels; Zircaloy, SS claddings)
- Reactor systems (LWR, SFR)

■ What's new, different, better?

- Reactor operations (power, temperature, burnup, ramp rate)?
 - e.g., failure probability vs. ramp rate, cladding/coolant temperature, burnup
 - This could be of real value to reactor operators, leading to power uprates, relaxation of operation constraints that come from fuel concerns (e.g., PCI), burnup extension...
- Science-based performance models that enable true predictability outside empirically derived (operational) database
 - Atomistically-informed simulations of microstructural evolution (lower length scale)
 - Properties and performance upscaled to engineering scale